Freistehendes Full-Range-Monitoring-System, das flexibel positioniert werden kann, um unübertroffene Neutralität und ein Höchstmaß an Kontrolle über die Richtcharakteristik und die Auswirkungen der Raumakustik zu bieten.
Produkte für diese Lösung:
Freistehendes Full-Range-Monitoring-System, das flexibel positioniert werden kann, um unübertroffene Neutralität und ein Höchstmaß an Kontrolle über die Richtcharakteristik und die Auswirkungen der Raumakustik zu bieten.
Produkte für diese Lösung:
118 dB
30 Hz - 43 kHz (-6dB)
H 593 x W 357 x D 347 mm, with Iso-Pod™ (Anzeige in Inch)
120 dB
23 Hz - 500 Hz (-6dB)
H 1108 x W 400 x D 400 mm, (Anzeige in Inch)
Smart Active Monitor (SAM™)-Systeme
Minimum Diffraction Coaxial (MDC™) Treiber-Technologie
Minimum Diffraction Enclosure (MDE™)-Technologie
Directivity Control Waveguide (DCW™)-Technologie
Acoustically Concealed Woofers (ACW™)-Technologie
Schutzschaltungen
Optimierte Verstärker
Bassreflexport-Design
Intelligent Signal Sensing (ISS™)-Technologie
Aktive Frequenzweichen
Iso-Pod™ Standfuß
Vielseitiges Montagezubehör
Kompensation von Raumeinflüssen
Laminar Integrated Port (LIP™)-Technologie
In den letzten zehn Jahren hat die Erstellung von Medieninhalten weltweit rapide zugenommen, was zu erheblichen Veränderungen in der Art und Weise geführt hat, wie Einrichtungen mit der gestiegenen Arbeitsbelastung umgehen. Mehr denn je findet eine wachsende Zahl von Audioproduktionen in kleineren, engeren Arbeitsumgebungen statt. Dadurch verstärken sich häufig akustische Probleme und die Zuverlässigkeit beim Abhören sinkt. Gleichzeitig muss man sich als Profi auf ein präzises Abhörsystem verlassen können, das den Klang neutral und ohne Verfärbungen wiedergibt.
Aufbauend auf den bewährten elektroakustischen Grundlagen unserer Produkte der Serien 1200, 8000 und 7000 sind die fortschrittlichen SAM-Systeme von Genelec die modernsten und flexibelsten Abhörlösungen von heute. Sie sind ein unverzichtbares Werkzeug für Audioprofis, da sie sich automatisch an die akustische Umgebung anpassen und Pegel, Verzögerungen und Frequenzgang korrigieren können. SAM-Systeme können über das Genelec-eigene Loudspeaker Manager (GLM™)-Netzwerk und die entsprechende Software gesteuert werden, so dass Sie ein äußerst flexibles und zuverlässiges Abhörsystem aufbauen können.
Die GLM-Software ist ein intuitives und leistungsfähiges Monitorsteuerungs-Netzwerksystem, das die Verbindung zu allen SAM-Studiomonitoren und Subwoofern im Netzwerk verwaltet - mehr als 80 Geräte falls notwendig. Sie ermöglicht die Einstellung von Pegeln, Abstandsverzögerungen und eine Anpassung des Frequenzgangs mit dem intelligenten automatischen Kalibrierungsalgorithmus AutoCal™. Alle Parameter und Einstellungen werden in System-Setup-Dateien oder für den Stand Alone-Betrieb in jedem einzelnen Monitor oder Subwoofer gespeichert.
Außerdem können alle akustischen Eigenschaften der SAM-Systeme für verschiedene Arbeitsstile oder Kundenanforderungen optimiert werden. Auch ween Sie zwischen verschiedenen Räumen wechseln, können Sie von der SAM-Technologie profitieren und ein Höchstmaß an Konsistenz beim Monitoring erreichen.
Genelec SAM-Systeme bieten eine umfassend skalierbare, lösungsorientierte, intelligent vernetzte Produktpalette, die analoge und digitale Signale in praktisch jeder Arbeitsumgebung unterstützt.
Typisch für alle aktuellen koaxialen Konstruktionen ist der etwas unruhige Frequenzgang aufgrund der inhärenten Beugungsprobleme. Crossover-Probleme, die durch die nicht-koinzidente Anordnung der Quellen entstehen, werden jedoch mit einer koaxialen Konfiguration gelöst. Hier liegt der Grundstein für die Minimum Diffraction Coaxial (MDC™)-Lösung von Genelec: Sie profitiert zwar von den typischen Vorteilen des koaxialen Designs, überwindet aber auch dessen gravierende Mängel.
Der erste Schritt besteht darin, die Auslenkung der Membran zu minimieren, d.h. die niederfrequente Bandbreite des Treibers zu begrenzen. Der nächste Schritt ist die Vermeidung aller Beugungsquellen. Die Hauptstruktur des MDC-Designs besteht aus einer integrierten MF-Membran-Suspension-Hochtöner-Konstruktion. Der sichtbare Teil des Koaxiallautsprechers besteht aus einer gebogenen, flexiblen Oberfläche, in deren Mitte sich die Hochtonkalotte befindet. Der innere Teil verbindet die Membran ohne akustische Unterbrechung mit dem Hochtöner, während der äußere Teil die Membran mit dem Treiberchassis verbindet.
Da es zwischen dem Hochtöner und der Membran keine akustisch wahrnehmbaren Diskontinuitäten gibt, sondern nur eine glatte Oberfläche, gibt es auch keine Beugung. Das Konusprofil ist sehr sorgfältig optimiert, um einen integrierten Richtcharakteristik-Schallführung für die Abstrahlung des Hochtöners zu bilden. Die Außenkante des Treibers ist mit einer normalen Genelec DCW-Schallführung abgeschlossen, um auch die Abstrahlung des Mitteltöners zu kontrollieren. Der Frequenzgang ist sowohl auf als auch außerhalb der Achse sehr gleichmäßig und frei von jeglichen Anomalien, und die Richtcharakteristik ist gut kontrolliert.
Dieser Durchbruch im koaxialen Design sorgt für eine verbesserte Abbildung und Gesamtklangqualität auf und außerhalb der Achse, einen extrem linearen Frequenzgang, der zu einer hervorragenden Klarheit und Definition aller Details von Audiosignalen führt.
Ein häufiges Problem bei Standard-Standlautsprechern ist, dass die Unregelmäßigkeiten in der Schallwand zu Beugungen führen und die scharfen Ecken des Lautsprechers als sekundäre Schallquellen wirken.
Um die Linearität des Frequenzgangs und die Leistung freistehender Lautsprechersysteme zu verbessern, hat Genelec ein hochinnovatives Gehäuse entwickelt, das auf die Eigenschaften der Monitortreiber abgestimmt ist und abgerundete Kanten sowie eine sanft gewölbte Front und Seitenwände aufweist. Neben der unübertroffenen Linearität des Frequenzgangs sorgt das Gehäuse für eine hervorragende Abbildung.
Um eine glatte und elegant gewölbte Gehäuseoberfläche zu erreichen und die Außenabmessungen des Gehäuses zu reduzieren, während gleichzeitig das Innenvolumen für einen verbesserten Wirkungsgrad im Tieftonbereich maximiert wird, haben wir ein Gehäuse aus Aluminiumdruckguss entwickelt. Aluminium ist leicht, steif und sehr einfach zu dämpfen, um eine "tote" Struktur zu erhalten. Die Gehäusewände können relativ dünn ausgeführt werden und bieten gleichzeitig eine gute EMV-Abschirmung und eine hervorragende Wärmeableitung für die Endverstärker. Der Druckguss besteht aus zwei Teilen, der Vorder- und der Rückseite, die für eventuelle Wartungsarbeiten leicht zu trennen sind.
Der DCW-Waveguide wurde in das MDE-Aluminiumgehäuse integriert, um eine bessere Kontrolle über die Richtwirkung des Lautsprechers zu ermöglichen. Grundsätzlich wird die niederfrequente Grenze für eine konstante Richtcharakteristik durch die Größe der Schallführung bestimmt, d. h. je größer die Oberfläche, desto besser die Kontrolle. Mit einer sehr kontrollierten Abstrahlung auf und außerhalb der Achse wird die Hörzone konsistent, was besonders bei Mehrkanal-Anwendungen von größter Bedeutung ist. Die kontrollierte Richtwirkung reduziert auch mögliche Reflexionen erster Ordnung an Oberflächen in der Nähe des Lautsprechers und trägt so zu einer konsistenten Audiowiedergabe in unterschiedlichen akustischen Umgebungen bei. Die gesamte vordere Schallwand ist sanft gewölbt und die akustisch transparenten Schutzgitter fügen sich optisch perfekt in die verschiedenen anderen gewölbten Oberflächen ein.
Mit der Entwicklung der Directivity Control Waveguide (DCW™)-Schallführung verfolgte Genelec 1983 einen revolutionären Ansatz. Sie wurde damals in einem eiförmigen Gehäuse eingesetzt. Über 30 Jahre entwickelt und immer weiter verfeinert, verbessert sie die Leistung von direkt abstrahlenden Mehrwege-Monitoren erheblich.
Die DCW-Technologie formt die abgestrahlte Wellenfront auf kontrollierte Weise und ermöglicht so eine vorhersehbare Anpassung des Abstrahlverhaltens (Dispersion). Um eine gleichmäßige und ausgewogene Richtcharakteristik zu erreichen, wird der Abstrahlwinkel begrenzt, so dass die Streustrahlung reduziert wird. Dies führt zu einer ausgezeichneten Linearität des gesamten Frequenzgangs sowie zu einem gleichmäßigen Leistungsverhalten. Frühe Reflexionen werden minimiert und man erreicht eine breite und kontrollierte Hörzone, mit einer akkuraten Klangwiedergabe auf und außerhalb der Achse.
Geringe Erstreflexionen und eine kontrollierte, konstante Richtwirkung haben einen weiteren wichtigen Vorteil: Die Frequenzbalance des Raumschallfeldes ist im Wesentlichen die gleiche wie die des Direktfeldes der Monitore. Das hat zur Folge, dass die Leistung des Abhörsystems weniger von den raumakustischen Eigenschaften abhängig ist.
Breite und Tiefe des Klangbildes, kritische Komponenten in jeder Hörumgebung, sind nicht nur für das Hören auf der Achse, sondern auch außerhalb der Achse wichtig. Davon profitieren auch anderen Personen im Raum, die nicht im Sweet Spot sitzen, wie es in großen Regieräumen oft der Fall ist.
Das koaxiale 3-Wege-System 8351 nutzte erstmals unsere neuartige Acoustically Concealed Woofer (ACW™)-Technologie. Die akustisch verdeckten Tieftöner strahlen durch Öffnungen an beiden Enden des Gehäuses ab.
Der 8351 ist mit zwei Tieftönern ausgestattet, deren Positionierung so gewählt wurde, dass das koaxiale akustische Abstrahlungskonzept auf tiefe Frequenzen ausgedehnt wird. In Bezug auf das Abstrahlverhalten im Tieftonbereich verhält sich das System aus zwei Tieftönern, die durch einen Abstand voneinander getrennt sind, akustisch wie ein großer Tieftöner, der den Abstand zwischen den beiden Tieftönern überbrückt. Außerdem erweitert ein solches Doppeltieftönersystem die Kontrolle über die Richtwirkung auf tiefe Frequenzen entlang der größten Abmessung der vorderen Schallwand.
Die ACW-Technologie macht die Tieftonöffnungen und die Tieftonchassis akustisch unsichtbar für die akustische Abstrahlung des koaxialen Treibers mit minimaler Beugung (MDC™), der für die Frequenzen des Mittel- und Hochtöners verantwortlich ist. Die Abstrahlöffnungen sind hinsichtlich Größe und Krümmung optimiert, um akustische Beugungen zu minimieren.
Die ACW-Lösung ermöglicht es uns außerdem, die gesamte vordere Schallwandfläche des 8351 als eine große Directivity Control Waveguide (DCW™)-Schallführung zu verwenden, die in ein Minimum Diffraction Enclosure (MDE™)-Gehäuse integriert ist.
Die ACW-Anordnung des 8351 schafft einen Monitor mit kompakten Abmessungen, der sich in Bezug auf das Abstrahlverhalten im Tieftonbereich wie ein viel größeres System verhält.
Dieses kontrollierte Abstrahlverhalten im Tieftonbereich führt zu einer verbesserten Abhörqualität und einer geringeren Interaktion zwischen dem Monitor und dem Raum.
In kritischen Produktionsumgebungen ist es unerlässlich, dass Abhörsysteme jederzeit zuverlässig und voll funktionsfähig arbeiten. Einer der Hauptgründe für den großen Erfolg von Genelec in Rundfunk- und Fernsehumgebungen ist die Zuverlässigkeit unserer Produkte. Ein Schlüsselelement für diese Zuverlässigkeit ist die interne Schutzschaltung, die seit 1978 in allen Produkten enthalten ist.
Die Schutzschaltung verhindert Treiberausfälle, indem sie Signalpegel erkennt und bei plötzlichen Pegelspitzen oder konstant zu hohen Pegeln den Signalpegel automatisch absenkt. Natürlich beeinträchtigt diese Funktion in keiner Weise die Klangqualität der Lautsprecher, wenn sie innerhalb der Spezifikationen arbeiten, sondern verhindert nur, dass zu hohe Eingangssignale den Lautsprecher zerstören.
Elektronische Frequenzweichen ermöglichen es, das Audiosignal in einzelne Frequenzbänder aufzuteilen, die separat an einzelne Leistungsverstärker geleitet werden können, die dann an spezielle, für ein bestimmtes Frequenzband optimierte Schallwandler angeschlossen werden.
In einem typischen 2-Wege-Lautsprechersystem benötigt die aktive Frequenzweiche zwei Leistungsverstärker - einen für den Tieftöner und einen für den Hochtöner. Die Leistungsverstärker werden direkt an die Chassis eines Aktivlautsprechers angeschlossen, wodurch die Belastung des Leistungsverstärkers viel einfacher ermittelt werden kann. Jeder treiberspezifische Leistungsverstärker hat nur einen begrenzten Frequenzbereich zu verstärken (der Leistungsverstärker wird nach der aktiven Frequenzweiche platziert), was die Konstruktion noch einfacher macht.
Genelecs Entscheidung für Bassreflex-Gehäuse geht auf das Modell S30 zurück, das erste Genelec-Produkt aus dem Jahr 1978. Die Leistung der Ports wurde im Laufe der Jahre verbessert und verfeinert, um die Basserweiterung und den Schalldruckpegel des Tieftöners zu erhöhen und eine hervorragende Bassartikulation und -definition zu erreichen.
Sowohl der Treiber als auch der Port tragen zur Gesamtabstrahlung eines Reflexgehäuses bei. Der größte Teil der Abstrahlung kommt vom Treiber, aber bei der Resonanzfrequenz des Bassreflexgehäuses ist die Auslenkungsamplitude des Treibers klein und der größte Teil der Abstrahlung kommt aus der Öffnung.
Um die Luftgeschwindigkeit im Rohr zu minimieren, sollte die Querschnittsfläche der Öffnung groß sein. Das wiederum bedeutet, dass das Reflexrohr lang sein muss, was eine ziemliche Herausforderung für das Design darstellt.
Das lange, gebogene Rohr maximiert den Luftstrom, so dass tiefe Bässe ohne Kompression wiedergegeben werden können. Aus offensichtlichen Gründen endet das Reflexrohr in einer weiten Ausbuchtung auf der Rückseite des Gehäuses, wodurch Öffnungsgeräusche minimiert werden und eine hervorragende Bassartikulation gewährleistet wird.
Die Krümmung des Rohrs wurde ebenfalls sorgfältig entwickelt, um hörbare Geräusche, Kompression oder Verzerrungen zu minimieren. Das innere Ende des Rohrs hat einen geeigneten Widerstandsabschluss, um wiederum hörbare Rauschgeräusche und Luftverwirbelungen zu minimieren.
Das Design der Reflexöffnungen ermöglicht es, die Auslenkung des Tieftöners erheblich zu reduzieren und die lineare Tieftonleistung zu verbessern.
Die Anfang 2013 eingeführte Intelligent Signal-Sensing-Technologie von Genelec wurde entwickelt, um sowohl die ErP-Richtlinien der Europäischen Union als auch die umfassenderen Nachhaltigkeitsverpflichtungen des Unternehmens zu erfüllen.
Die Intelligent Signal Sensing, ISS™-Schaltung verfolgt den Signaleingang des Lautsprechers und erkennt, ob er genutzt wird. Wenn der ISS-Schaltkreis über einen bestimmten Zeitraum kein Audiosignal am Eingang findet, versetzt er den Lautsprecher in einen energiesparenden Ruhezustand und der Lautsprecher verbraucht weniger als 0,5 Watt. Wenn ein Eingangssignal erkannt wird, schaltet sich der Lautsprecher sofort wieder ein.
Wenn diese Funktion nicht genutzt werden soll, kann ISS™ deaktiviert werden, indem der DIP-Schalter "ISS Disable" auf der Rückseite in die Position "ON" gestellt wird. In diesem Modus wird der Monitor nur über den Netzschalter ein- und ausgeschaltet.
Beachten Sie, dass der Netzschalter den Monitor immer vollständig ausschaltet.
Nachfolgend finden Sie eine Liste der Bedingungen, die verhindern, dass der Monitor oder Subwoofer in den ISS-Ruhezustand versetzt wird:
Es ist üblich, dass digitale Audioquellen das Clocking-Signal senden, sobald die Quelle eingeschaltet ist. Dies verhindert, dass der Monitor oder Subwoofer in den Ruhezustand übergeht. Es könnte auch ein Rauschen im analogen Eingangssignal vorhanden sein, das den Ruhezustand von ISS verhindert. Um herauszufinden, an welchem Eingang ein Signal anliegt, das das Umschalten in den ISS-Ruhezustand verhindert, entfernen Sie jedes Kabel einzeln und prüfen Sie, ob der ISS-Ruhezustand aktiviert wird.
Elektronische Frequenzweichen ermöglichen die Aufteilung des Audiosignals in einzelne Frequenzbänder, die separat an einzelne Leistungsverstärker geleitet werden können, die dann an spezifische, für ein bestimmtes Frequenzband optimierte Wandler angeschlossen werden.
Aktive Frequenzweichen gibt es sowohl in digitaler als auch in analoger Ausführung. Die digitalen aktiven Frequenzweichen von Genelec beinhalten zusätzliche Signalverarbeitung wie Schutzschaltungen, Verzögerung und Entzerrung.
Analoge aktive Frequenzweichen von Genelec enthalten elektronische Komponenten, die mit niedrigen Signalpegeln betrieben werden, die für die Eingänge von Leistungsverstärkern geeignet sind. Dies steht im Gegensatz zu passiven Frequenzweichen, die mit den hohen Signalpegeln der Endverstärkerausgänge arbeiten und dabei hohe Ströme und in einigen Fällen auch hohe Spannungen verarbeiten müssen.
In einem typischen 2-Wege-System benötigt die aktive Frequenzweiche zwei Leistungsverstärker - einen für den Tieftöner und einen für den Hochtöner.
Die Verwendung des aktiven Ansatzes ermöglicht die Anpassung und Optimierung des Frequenzgangs des gesamten Lautsprechersystems in verschiedenen Raumumgebungen ohne teure externe Equalizer. Das Endergebnis ist ein einfacheres, zuverlässigeres, effizienteres, konsistenteres und präziseres aktives Lautsprechersystem.
Obwohl es ratsam ist, freistehenden Lautsprecher auf robusten und stabile Bodenstativen aufzustellen, ist es eine weit verbreitete Lösung, die Lautsprecher direkt auf einen Tisch oder ein Mischpult zu stellen.
Dies führt zu mehreren nachteiligen Nebeneffekten. Die Ausrichtung der Lautsprecherachse auf den Hörer ist nur selten möglich, außerdem übertragen sich unerwünschte mechanische Schwingungen vom Lautsprecher auf die Aufstellfläche, und die Reflexion erster Ordnung an der Arbeitsfläche führt zu Kammfilterung und damit zu Welligkeiten im Frequenzgang.
Um diese sehr häufigen Probleme zu lösen, entwickelte Genelec eine effiziente und sehr praktische Lösung. Wir entwarfen einen Lautsprecherstandfuß namens Iso-Pod™, der am Aluminiumgehäuse befestigt wird. Er hat vier flache Füße und besteht aus einem speziellen gummiartigen Material. Er kann entlang der gewölbten Boden- oder Seitenfläche verschoben werden kann, um eine Neigung des Lautsprechers von ±15° zu ermöglichen.
Die akustische Achse des Lautsprechers kann dann genau auf den Hörer ausgerichtet werden, indem die Neigung des Gehäuses mit dem Iso-Pod eingestellt wird. Die schwingungsisolierenden und dämpfenden Eigenschaften reduzieren Verfärbungen im Mitteltonbereich, die durch unerwünschte, auf die Auflageflächen übertragene Schwingungen entstehen.
Diese innovative Lösung ist ein integraler Bestandteil des Genelec-Lautsprecherdesigns und bietet klare Vorteile in Bezug auf Benutzerfreundlichkeit und Klangqualität.
Zusätzlich zum perfekten akustischen Design und den fortschrittlichen Anpassungsmöglichkeiten, um das Verhalten des Lautsprechers an die Raumumgebung anzupassen, bieten Genelec-Lautsprecher eine Vielzahl von Montagemöglichkeiten für eine einfache Installation in verschiedenen Anwendungen.
Unser breites Angebot an Zubehör und integrierte Befestigungspunkte auf der Rückseite unserer Aluminiumgehäuse bietet Lösungen für alle gängigen Einbausituationen. Für die Wand- und Deckenbefestigung sind M6-Haltepunkte in das Druckguss-Gehäuse integriert.
Einige Modelle verfügen außerdem über ein 3/8"-Gewinde an der Unterseite des Gehäuses zur Befestigung eines robusten Mikrofonständers. Andere größere und schwerere Modelle verfügen über M10-Befestigungspunkte. Für den Iso-Pod-Ständer, der Teil unseres Produktdesigns ist, wurden spezielle Stativplatten entwickelt.
Mit diesen Merkmalen haben unsere Lautsprecher ihren Weg in eine Vielzahl von Anwendungen auch außerhalb der professionellen Audio- und Studiowelt gefunden, zum Beispiel in kommerzielle und AV-Installationsprojekte sowie in private Umgebungen auf der ganzen Welt.
Die Wechselwirkung zwischen Raumakustik und Lautsprecherabstrahlung ist komplex. Jeder Raum verändert den Frequenzgang des Monitors auf einzigartige Weise, z. B. stark reflektierende oder gedämpfte Räume oder die Aufstellung an einer Wand oder auf einem Stativ, das von den Wänden entfernt ist.
Alle Genelec-Lautsprechersysteme verfügen über eine Raumanpassung, um die Raumeinflüsse zu kompensieren und einen neutralen Frequenzgang an der Hörposition zu erhalten.
Die analogen Lautsprechersysteme von Genelec bieten vielseitige DIP-Schalter zur Raumanpassung. Sie umfassen (je nach Modell):
Für tiefe Frequenzen gibt es zwei Haupt-Schalter. Der Bass-Tilt-Schalter, der als Shelving-Filter fungiert, und der Bass-Roll-Off-Schalter, mit dem Sie den tiefen und sehr tiefen Frequenzgang des Systems in verschiedenen Installationen optimieren können. Bei großen Systemen sind Bass-, Mittel- und Hochtonpegelregler vorhanden. Mit diesen Reglern lässt sich das relative Gleichgewicht zwischen den verschiedenen Frequenzbändern optimieren.
Die Betriebsanleitung und das Datenblatt jedes Lautsprechers enthalten eine Liste der empfohlenen Einstellungen für die Raumanpassung bei verschiedenen Installationen. Diese wurden auf der Grundlage langjähriger praktischer Erfahrungen und Messungen in verschiedenen typischen akustischen Umgebungen festgelegt.
Genelec SAM-Systeme bieten eine skalierbare, lösungsorientierte, intelligent vernetzte Auswahl an Modellen, die alle mit der Genelec Loudspeaker Manager (GLM™)-Software und dem automatischen Kalibrierungssystem AutoCal™ ausgestattet sind.
Genelec AutoCal bietet den branchenweit ersten integrierten Prozess für die vollständige automatische Messung, Analyse und Einstellung jedes Monitors im GLM-Kontrollnetzwerk. Das System misst den Frequenzgang an der Hörposition und setzt passende Kompensationsfilter im unteren und mittleren Frequenzbereich, um raumakustische Anomalien sowie die Unterschiede zwischen verschiedenen Hörpositionen zu minimieren. AutoCal gleicht auch die relativen Pegel, die Laufzeit und die korrekte Crossover-Phase (AutoPhase genannt) für alle Subwoofer im Netzwerk ab.
Der Acoustic Response Editor bietet eine genaue grafische Darstellung des gemessenen Frequenzgangs, der zur Kompensation genutzten Filter und des sich daraus ergebenden Systemfrequenzgangs für jeden Monitor und Subwoofer. Alle Einstellungen können zudem manuell angepasst werden.
Genelecs Entscheidung für Bassreflex-Gehäuse geht auf das Jahr 1978 und den ersten von Genelec entwickelten aktiven Monitor, den S30, zurück. Seitdem wurde an der Verbesserung der Leistung und Effizienz von Reflexöffnungen geforscht.
Ein typisches Reflexport-Gehäuse besteht aus einem Rohr und einer Öffnung. Um Turbulenzen im Rohr zu vermeiden, darf der Luftstrom keine spitzen Winkel einnehmen, da dies zu Rauschen, Kompression, Verzerrungen und Verlusten der gesamten abgestrahlten Energie führen würde. Um die Geschwindigkeit des Luftstroms zu minimieren, müssen sowohl das Rohr als auch sein Querschnitt groß sein. Oftmals werden die Außenabmessungen des Gehäuses zu einer Einschränkung, da ein langes Rohr nicht mehr in das verfügbare Volumen passt.
Die M-Serie verfügt über zwei Bassreflex-Ports mit Öffnungen, die sich über die Hälfte der Gehäusetiefe erstrecken, um diese spezifischen Probleme zu lösen. Der neuartige, zum Patent angemeldete Laminar Integral Port, LIP™, wurde mithilfe computergestützter Finite-Elemente-Modelle strömungsoptimiert, um selbst bei sehr hohen Audio-Ausgangspegeln geringe Verzerrungen und einen hohen Wirkungsgrad zu erzielen.
Die Reflexöffnungen werden während des Formprozesses in das NCE-Gehäuse integriert, so dass keine separaten zusätzlichen Komponenten erforderlich sind. Die Querschnittsdarstellung (Abbildung) zeigt die effizienten Strömungseigenschaften. Die natürliche Installationsausrichtung der M-Serie ist vertikal, und um eine einfache Platzierung des Monitors an einer Wand zu ermöglichen, sind die Öffnungen der M-Serie nach unten gerichtet, in den Raum unter dem Monitor.
Das neuartige LIP™-Bassreflexsystem (Laminar Integrated Port) sorgt für eine präzise Tieftonwiedergabe und eine originalgetreue Audiowiedergabe.
W371 does not need a subwoofer because the W371 is itself a very capable low frequency source, in many ways superior to using a subwoofer. In certain immersive installations, a subwoofer can be used as the output method for the LFE channel content. In that case, the subwoofer is calibrated using the GLM as a second step after the primary system calibration.
Bass management means dividing low frequencies into a subwoofer and high frequencies to a loudspeaker, with the typical crossover frequency being in the range 50-100 Hz. A loudspeaker system using W371 with a monitor is a full range system that should not be bass managed. The output quality of the W371 with a monitor is acoustically superior to using a subwoofer and bass management for low frequencies. Because of this, W371 cannot be bass managed with a subwoofer.